
Android Development
Session 1

Javier PoncelaJavier Poncela

Contents

1. Android Basics

2 D l T l2. Development Tools

3. First Application

Android Development
Javier Poncela

IoBM – February 2013 2

Android Phones

Sony X10

Motorola CliqHTC G1 HTC HeroSamsung i7500

Motorola DroidHTC Magic HTC Tattoo

Android Development
Javier Poncela

IoBM – February 2013 3

Samsung Moment
Motorola Droid

Open Handset Alliance

Android Development
Javier Poncela

IoBM – February 2013 4

Open Handset Alliance

 OHA(Open Handset Alliance) is a group of 71
technology and mobile companies, including Google,
Intel, Dell, HTC and China Mobile…

 Google announced the Open Handset Alliance and the
Android platform in November of 2007 releasing the Android platform in November of 2007, releasing the
first beta version Android Software Development Kit
(SDK) at the same time()
• Within a matter of a few months, over 1 million people

had downloaded versions of the SDK
OHA’ i OHA’s aim
• Accelerate innovation in mobile phones
• Offer consumers a richer less expensive and better Offer consumers a richer, less expensive, and better

mobile experience
 Google is the ‘captain’

Android Development
Javier Poncela

IoBM – February 2013 5

What’s Android

 Android is a software stack for
mobile devices that includes an
operating system, middleware and
key applications

 Android is based on JAVA and all  Android is based on JAVA and all
its applications are developed in
JAVA

 The JAVA VM, known as Dalvik, is
highly customized and optimized
f bil d ifor mobile devices

 Android SDK offers rich tools for
android application development android application development
and many useful APIs

Android Development
Javier Poncela

IoBM – February 2013 6

Android Features

 Application framework enabling reuse and replacement of
components

 Optimized Java virtual machine: Dalvik
 Optimized Graphics Processing, supporting 2D and 3D

graphics(OpenGL ES 1 0)graphics(OpenGL ES 1.0)
 Integrated open source web browser: WebKit
 SQLite for structured data storage
 Multimedia capability, supporting varieties of audio, video

and still image formats
 Bluetooth GSM EDGE 3G and Wi Fi support Bluetooth, GSM, EDGE, 3G and Wi-Fi support
 Camera, GPS, compass, accelerometer and other sensors
 Rich development environment, including an emulator, p , g ,

debugging tools, memory probe tools, log tools and eclipse
plugins

Android Development
Javier Poncela

IoBM – February 2013 7

Android Architecture

Android Development
Javier Poncela

IoBM – February 2013 8

Libraries

 System C library, the standard C system library, tuned for
embedded Linux-based devices

 Media Libraries, support playback and recording of many
popular audio and video formats, as well as image files,
including MPEG4, H.264, MP3, AAC, AMR, JPG, and PNGg , , , , , ,

 Surface Manager, manages access to the display
subsystem and seamlessly composites 2D and 3D graphic
layers from multiple applicationslayers from multiple applications

 WebKit, a modern web browser engine which powers both
the Android browser and an embeddable web view

 SGL, the underlying 2D graphics engine
 3D libraries, an implementation based on OpenGL ES 1.0

APIsAPIs
 FreeType , bitmap and vector font rendering
 SQLite , a powerful and lightweight relational database

Android Development
Javier Poncela

IoBM – February 2013

Q , p g g
engine

9

Android Runtime

 The core of Android platform
 Dalvik Virtual Machine (VM)()

• Executes files in Dalvik
Executable (.dex) format

b Java core Libraries
• Provides most of the functionality of the Java language

 How many Dalvik VMs? How many Dalvik VMs?
• Multiple Dalvik VMs may run at the same time
• Every Android application runs in its own process, with e y d o d app cat o u s ts o p ocess, t

its own instance of the Dalvik virtual machine

DVM JVM  Slow CPU
Google Sun
Dalvik Executable Java Bytecode
S bset of standard Ja a

Slow CPU
 Little RAM: 64Mb

total, ~10Mb available
at runtime

Android Development
Javier Poncela

IoBM – February 2013 10

Subset of standard Java
Library  No swap space

Application Framework

 Simplify the reuse of components
• Applications can publish their capabilities and any other pp p p y

application may then make use of those capabilities
 Applications is a set of services and systems, include

A ti it M th lif l f li ti • Activity Manager, manages the lifecycle of applications
and provides a common navigation back stack

• Notification Manager, enables all applications to g , pp
display custom alerts in the status bar

• …

Android Development
Javier Poncela

IoBM – February 2013 11

Application Framework

• …
• Resource Manager, providing access to non-code

resources such as localized strings, graphics, and layout
files

• Content Providers access data from other applications Content Providers, access data from other applications
(such as Contacts), or to share their own data

• Views, used to build an application, including lists,
id t t b b tt d b dd bl b grids, text boxes, buttons, and even an embeddable web

browser

 Activity Manager, manages the lifecycle of applications
and provides a common navigation backstackand provides a common navigation backstack

 …

Android Development
Javier Poncela

IoBM – February 2013 12

Applications

 A set of core applications shipped with Android
platform
• E-mail client, SMS program, calendar, maps, browser,

contacts, and others
 All written in Java using Google SDK All written in Java using Google SDK

 There is no difference between the built-in  There is no difference between the built-in
applications and applications created with SDK
• Application framework encourages reuse of application

components

Android Development
Javier Poncela

IoBM – February 2013 13

Applications

 Applications are bundled into an Android PacKage
(.apk files) which are archives containing the compiled
code, data and resources for the application, so
applications are completely self-contained

 You can install applications either through a market
(Google Play Store, Amazon Appstore, F-Droid, etc), (Google Play Store, Amazon Appstore, F Droid, etc),
manually (through ADB or a file manager), from a
web server, …

Android Development
Javier Poncela

IoBM – February 2013 14

Application Development

 New way of thinking…
• Limited processing powerp g p
• Limited RAM
• Limited permanent storage capacity
• Small screen and low resolution (5”, 10”)
• High cost of data transfer
• Slow data transfer rates with high latency• Slow data transfer rates with high latency
• Unreliable data connections

 OS Manages process lifetime (app assassin)
• App responsiveness
• Setting priority to interaction

Android Development
Javier Poncela

IoBM – February 2013 15

Application Development

 Behaviour Police
5s: Application must respond to pp p

any user action (e.g., key
press) within 5s

10s: A BroadcastReceiver must10s: A BroadcastReceiver must
return from its OnReceive
handler within 10s

** Worst case, not goal!:

Users notice .5s

Android Development
Javier Poncela

IoBM – February 2013 16

Application Development

 You MUST
• Ensure that your app is ready for swift deathy pp y
• Yet, it must remain response and/or restart in the

background
• M st come to the fo eg o nd q ickl• Must come to the foreground quickly

 Good behavihour is expected Good behavihour is expected
• Is well behaved
• Switches seamlessly from background to foregroundy g g
• Is polite (e.g., stealing focus)
• Presents a consistent user interface
• Is responsive

Android Development
Javier Poncela

IoBM – February 2013 17

Types of Applications

 Foreground
• Useful when being usedg
• Suspended otherwise

B k d Background
• Apart from when being configured, spends most of

lifetime hidden (e.g., call screening app)lifetime hidden (e.g., call screening app)

 Intermittent
• Some interaction but mostly in the background (e.g.,

media player)

 Widget
• Home screen status update

Android Development
Javier Poncela

IoBM – February 2013 18

World Market Share - 2009

Linux Android webOS

Windows
Mobile
9%

5% 4% 1%

Symbian

Symbian
iPhone

9%
BlackBerry

iPhone
47%iPhone

14% Windows Mobile

Android
BlackBerry

20% webOS

Android Development
Javier Poncela

IoBM – February 2013 19

World Market Share – Progression 2009-2012

(Symbian / WebOS / …)(y)

Android Development
Javier Poncela

IoBM – February 2013 20

Android Versions 3Q2012

Android Development
Javier Poncela

IoBM – February 2013 21

Android Versions 3/Jan/2013

Android Development
Javier Poncela

IoBM – February 2013 22

Screen Size & Densities

Android Development
Javier Poncela

IoBM – February 2013 23

Tools

Software to Download & Install

1. Java Development Kit (JDK)p ()
http://www.oracle.com/technetwork/java/javase/downloads/index.html

2 Eclipse IDE for Java2. Eclipse IDE for Java
http://www.eclipse.org/downloads/

3. Eclipse Android Development Tools (ADT) plugin &
Android Software Development Kit (SDK)

http://developer.android.com/sdk/installing/installing-adt.htmlp // p / / g/ g

4. Add Android platform & other comps to SDK
htt //d l d id / dk/i t lli / ddi k ht lhttp://developer.android.com/sdk/installing/adding-packages.html

5. … Plus a Google account

Android Development
Javier Poncela

IoBM – February 2013

g

25

Let’s Try…

 Start Eclipse

Android Development
Javier Poncela

IoBM – February 2013 26

Let’s Try…

 Open Window -> Android SDK Manager
• Check installed packagesp g

Android Development
Javier Poncela

IoBM – February 2013 27

Let’s Try…

 Open Window -> AVD Manager
• Shows the list of Virtual Devices
• Allows creating new Virtual Devices

Android Development
Javier Poncela

IoBM – February 2013 28

Let’s Try…

 Select one AVD and Start it!
• First start-up may take a long timep y g

Android Development
Javier Poncela

IoBM – February 2013 29

First App: ‘Hello, World’

Create a new Android Project

 Select File->New->Other… -> Android -> Android
Application Project
• Application name
• Project name

P k • Package name
iobm.tutorial.xxxxx

• Build SDKBuild SDK
• Minimum SDK
• Create Activity

Android Development
Javier Poncela

IoBM – February 2013 31

Create a new Android Project

 Select File->New->Other… -> Android -> Android
Application Project
• Application name
• Project name

P k • Package name
iobm.tutorial.xxxxx

• Build SDKBuild SDK
• Minimum SDK
• Create Activity

Android Development
Javier Poncela

IoBM – February 2013 32

Hello World Project

 src: source folder

 gen: SDK generated file gen: SDK generated file

 android 2.3.3: reference lib

t bi  assets: binary resources

 res: resource files and

resource description files

 AndroidManifest.xml:

application description file

 default.properties: project

properties file

 Apk: zip-format

Android Development
Javier Poncela

IoBM – February 2013 33

Say Hello World

 Modify HelloWorld.java

Android Development
Javier Poncela

IoBM – February 2013 34

Import Widget Library

 Click left button on error indication
 Import ‘TextView’ widgetp g

Android Development
Javier Poncela

IoBM – February 2013 35

Run Hello World

 Select HelloWorld Project
a) Right-click, Run as -> Android Application) g , pp
b) Run->Run as->Android Application

 ADT will start a proper AVD and run application on it

Android Development
Javier Poncela

IoBM – February 2013 36

Behind HelloWorld

 R.java, generated by Android SDK, represents all the
resources of the app
• Resources are all in res folder
• Resources are pre-compiled into binary format
/* AUTO-GENERATED FILE. DO NOT MODIFY.
*
* This class was automatically generated by the
* aapt tool from the resource data it found. It
* should not be modified by hand.
*/
package sample.hello;
public final class R {

public static final class attr {
}
public static final class drawable {

public static final int icon=0x7f020000;
}
public static final class layout {

public static final int main=0x7f030000;
}

Android Development
Javier Poncela

IoBM – February 2013 37

public static final class string {

Behind HelloWorld

 res/layout, contains layout declarations of the app in
XML format
• UIs are built according to the layout file

main.xml
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout

xmlns:android=http://schemas.android.com/apk/res/androidxmlns:android http://schemas.android.com/apk/res/android
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout height="fill parent">android:layout_height fill_parent >
<TextView

android:layout_width="fill_parent"
android:layout height="wrap content"android:layout_height= wrap_content
android:text="@string/hello" />

</LinearLayout>

Android Development
Javier Poncela

IoBM – February 2013 38

Behind HelloWorld

 res/values, contains string declarations or other
values(e.g.:colors) of the app
• string.xml, contains string resources

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="hello">Hello World, HelloWorld!</string>
<string name="app_name">HelloWorld</string>

</resources>

referenced in
res/layout/main.

xml
referenced in

AndroidManifest.xmlxml AndroidManifest.xml

Android Development
Javier Poncela

IoBM – February 2013 39

Behind HelloWorld

 res/drawable, contains all image resources
• Folders may have suffixes, app will choose the most y , pp

suitable one, so do the other resources
• Three folders: drawable-ldpi, drawable-hdpi, drawable-

mdpi each contains an icon png filemdpi, each contains an icon.png file
• App will choose the proper icon according to the device

DPI
• Reference name:@drawable/icon

 Other folders we may use in future
 i (i ti) l (f d • menu, anim (animation), xml (preference and

searchable)

Android Development
Javier Poncela

IoBM – February 2013 40

Behind HelloWorld

 AndroidManifest.xml describes the application
• Declare app’s name, version, icon, permission, etc…pp , , , p ,
• Declare the application's components: activity, service,

receiver or provider

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="sample.hello" android:versionCode="1" android:versionName="1.0">
<application android:icon="@drawable/icon" android:label="@string/app_name">

<activity android:name=".HelloWorld" android:label="@string/app_name">
<intent-filter>

ti d id " d id i t t ti MAIN" /<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER”/>

</intent-filter>
</activity></activity>

</application>
<uses-sdk android:minSdkVersion="8" />

</manifest>

Android Development
Javier Poncela

IoBM – February 2013 41

Behind HelloWorld

 Basically, an Activity presents a visual user
interface for one focused endeavor the user can
undertake

 An application might consist of just one activity or
several each Activity is derived from several, each Activity is derived from
android.app.Activity and should be declared in
AndroidManifest.xml file

 Each activity is given a default window to draw in, the
window may be full screen or smaller and on top of
th i dother window

 The visual content of the window is provided by a
hierarchy of views — objects derived from the base hierarchy of views objects derived from the base
View class

Android Development
Javier Poncela

IoBM – February 2013 42

APK Generation Process

.apk files have
th i f t

Android Development
Javier Poncela

IoBM – February 2013 43

the .zip format

Beyond HelloWorld

 Build up an app that you
can input your greetings
and display your
greetings
• Input: EditText• Input: EditText
• Display: TextView
• Of course, we have to ,

add a button
 Edit res/layout/main.xml

fil t dd th file to add these
components
• Each has an android:idEach has an android:id

property, used to
reference it in code

Android Development
Javier Poncela

IoBM – February 2013 44

Beyond HelloWorld

 Modify HelloWorld.java
• Firstly get the references declared in main.xmly g

• Then add event response for Button

Android Development
Javier Poncela

IoBM – February 2013 45

Beyond HelloWorld

 Finished!
 Run->Run as->Android Applicationpp

Android Development
Javier Poncela

IoBM – February 2013 46

Android Development
Session 2

Javier PoncelaJavier Poncela

Contents

1. Activities

2 I2. Intents

3. Notifications

Android Development
Javier Poncela

IoBM – February 2013 2

Applications

 By default, each application:
• Assigned a unique Linux user IDg q
• Executes in its own Linux process

 By default, each process runs its own virtual machine

 Android manages process creation & shutdown
• Starts process when any of the application's code needs p y pp

to be executed
• Shuts down when process is no longer needed and/or

system resources are required by other applicationssystem resources are required by other applications

 Apps can have multiple entry points
i t j t i () th d• i.e., not just main() method

 App comprise components that the system can
instantiate and run as needed

Android Development
Javier Poncela

IoBM – February 2013

instantiate and run as needed

3

Application Components

 Activity
◦ Present a visual user interface for one focused endeavor

the user can undertake
◦ Example: a list of menu items users can choose from

 Services Services
◦ Run in the background for an indefinite period of time, no

visual interface
◦ Example: calculate the result to activities that need it

 Broadcast Receivers
◦ Receive and react to broadcast announcements

◦ Example: announcements that the time zone has changed

 Content Providers Content Providers
◦ Store and retrieve data and make it accessible to all

applications

Android Development
Javier Poncela

IoBM – February 2013

◦ Example: E-mail contacts, Music list

4

Activities

Activities

 Primary class for interacting with user
• Usually implements a focused task y p
• Usually Involves one screen full of data

A i l A i i d fi i l i bl  A single Activity defines a single viewable screen
• Defines the actions, not the layout
• Example: CalculatorExample: Calculator

 There may be multiple Activities (“Screens”) per
li iapplication

• Each is a separate entity

 Activities have a structured life cycle
• Different events in their life happen either via the user

t hi b tt ti ll
Android Development
Javier Poncela

IoBM – February 2013

touching buttons or programmatically

6

Activity Lifecycle

 onCreate() onCreate()

 onStart()

 onResume()

 onPause()

 onStop()

 onDestroy() onDestroy()

 onRestart()

Android Development
Javier Poncela

IoBM – February 2013 7

Activity Lifecycle

 onCreate() — Called when the activity is first created
 onStart() — Called when the activity becomes visible to the

user
 onResume() — Called when the activity starts interacting

with the userwith the user
 onPause() — Called when the current activity is being

paused and the previous activity is being resumed
 onStop() — Called when the activity is no longer visible to

the user
 onDestroy() — Called before the activity is destroyed by onDestroy() Called before the activity is destroyed by

the system (either manually or by the system to conserve
memory)

R t t() C ll d h th ti it h b t d  onRestart() — Called when the activity has been stopped
and is restarting again

Android Development
Javier Poncela

IoBM – February 2013 8

Activity Lifecycle

Android Development
Javier Poncela

IoBM – February 2013 9

Let’s Try… Project Activity101

 Import project
File -> Importp

 Have a look at
the code

Android Development
Javier Poncela

IoBM – February 2013 10

Let’s Try… Project Activity101

 State changes
are logged

Android Development
Javier Poncela

IoBM – February 2013 11

Let’s Try… Project Activity101

 Do the following (observe
log after each step):

 A)
• Start the application
• Press Back button

 B)
• Start the application• Start the application
• Press Home button

o Notice onDestroy is noty
called

• Start the Phone application
• Keep Home button pressed• Keep Home button pressed

o List of recent apps appears
• Choose Activity application

Android Development
Javier Poncela

IoBM – February 2013

• Press Back button
12

Lifecycle - Some Comments

 As you can see, an activity is destroyed when you
press the Back button
• This is crucial, as whatever state the activity is currently

in will be lost
 Hence you need to write additional code in your  Hence, you need to write additional code in your
activity to preserve its state when it is destroyed

 Note that the onPause() event is called both when an
activity is sent to the background, as well as when it
is killed when the user presses the Back buttonis killed when the user presses the Back button

 What happens if device configuration changes?
• Orientation, locale, etc

On configuration changes, Android usually kills &
restarts the current Activity

Android Development
Javier Poncela

IoBM – February 2013

restarts the current Activity

13

Activity Stack

 Applications usually consist of several activities (screens)

Android Development
Javier Poncela

IoBM – February 2013 14

Activity Stack

 Android manages a system Activity stack

Android Development
Javier Poncela

IoBM – February 2013 15

Activity Stack Management

 States
• Not started – not yet createdy
• Active

o Resumed/Running - visible, has focus
P d i ibl d t h f b t i t do Paused - visible, does not have focus, can be terminated

o Stopped - not visible, does not have focus, can be
terminated

• Finished – done
 The OS ranks processes and kills

those with lowest prioritythose with lowest priority
• We have no control on when an

Activity is destroyed…
o User action
o OS decision (low memory)

• But changes are notified

Android Development
Javier Poncela

IoBM – February 2013

• … But changes are notified

16

Typical Actions on State Change

 onCreate()
• Activity is being createdy g
• Setup global state

o Call super.onCreate()
I fl t UI i o Inflate UI views

o Configure views as necessary
o Set the activity’s content view

 onPause()
• Focus about to switch to another Activity

o Save persistent state
o Shutdown unneeded behavioro Shutdown unneeded behavior

Android Development
Javier Poncela

IoBM – February 2013 17

Saving Information during Changes in Configuration

 Changing screen orientation destroys an activity and
re-creates it
• Desirable to keep state, including already made user

inputs (i.e. text written)

 Preserve state of an activity
• onPause(): use your own mechanismsonPause(): use your own mechanisms
• onSaveInstanceState(): simply preserve the state so that

it can be restored later
o Simpler
o Provides a Bundle object as an argument
o Fired whenever an activity is about to be killed or put into o Fired whenever an activity is about to be killed or put into

the background. However, it is not fired when an activity is
being unloaded from the stack

Android Development
Javier Poncela

IoBM – February 2013 18

Saving Information during Changes in Configuration

 Saving state

 Restoring state: When an activity is re-created, onCreate() is first
fired, followed by the onRestoreInstanceState() event, which
enables you to retrieve the state through the Bundleenables you to retrieve the state through the Bundle

Android Development
Javier Poncela

IoBM – February 2013 19

Saving Information during Changes in Configuration

Android Development
Javier Poncela

IoBM – February 2013 20

Finishing an Activity

 Call finish()

 Call setResult(code) with the result code
• Usually RESULT_OK or RESULT_CANCELED and the

Intent

 Call fi i hA ti it (tC d) from caller Call finishActivity(requestCode) from caller

Android Development
Javier Poncela

IoBM – February 2013 21

Intents

Intents

 If an application has more than one activity, you may
need to navigate from one activity to another

 This navigation is accomplished through Intents

 An Intent, is a passive data structure holding an
abstract description of an operation to be performed
• An ‘simple’ intent consists of two parts • An ‘simple’ intent consists of two parts

o An action and
o The data that that action is supposed to use

Intent intent = new Intent(CurrentActivity.this, OtherActivity.class);
startActivity(intent);

Android Development
Javier Poncela

IoBM – February 2013 23

Intents

@O id@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R layout main);setContentView(R.layout.main);
// Button listener
Button btnStart = (Button) findViewById(R.id.btn_start);
btnStart setOnClickListener(new View OnClickListener() {btnStart.setOnClickListener(new View.OnClickListener() {

public void onClick(View view) {
Intent intent =

new Intent(CurrentActivity.this, OtherActivity.class);e te t(u e t ct ty.t s, t e ct ty.c ass);
startActivity(intent);

}
});

}

Android Development
Javier Poncela

IoBM – February 2013 24

Intents

 Intents can be used to:
• Declare your intention that an Activity or Service be y y

started to perform an action, usually with (or on) a
particular piece of data

• Broadcast that an event (or action) has occurred• Broadcast that an event (or action) has occurred
• Explicitly start a particular Service or Activity

 Most commonly used to start new Activities
• Explicitly: specifying the class to load

new Intent(CurrentActivity.this, OtherActivity.class);

• Implicitly: requesting that an action be performed on a
piece of datapiece of data
Intent intent = new Intent(Intent.ACTION_DIAL,

Uri.parse("tel:555-2368"));

Android Development
Javier Poncela

IoBM – February 2013 25

Intents

 Intent classes are late binding
 This means they are mapped and routed to a y pp

component that can handle a specified task at
runtime, rather than at build or compile time.

 One Activity tells the platform, “I need a map to
Granada GR ES ” and another component one the Granada, GR, ES, and another component, one the
platform determines is capable, handles the request
and returns the result.

Android Development
Javier Poncela

IoBM – February 2013 26

Implicit Intents – Resolution Process

 Components register with the platform to be the
destination for particular intent types using the
<intent-filter> element in the AndroidManifest.xml

 When an implicit intent is used, the platform chooses
the best suitable available componentthe best suitable available component

Android Development
Javier Poncela

IoBM – February 2013 27

Intent Definition

 Intents are made up of three primary pieces of
information —action, categories, and data— and
include an additional set of optional elements.

Android Development
Javier Poncela

IoBM – February 2013 28

Implicit Intents – Resolution Process

 When an Intent is requested, resolution takes place
through the registered filters, using the action, data,
and categories of the Intent

h h b l There are three basic rules
• The action must match
• The category must match• The category must match
• If specified, the data type must match, or the

combination of data scheme and authority and path
must match

Android Development
Javier Poncela

IoBM – February 2013 29

Implicit Intents – Resolution Process

 Action matching
• The action specified in the Intent object must match one p j

of the actions listed in the filter
• An Intent object that doesn't specify an action

automatically passes the testautomatically passes the test
• If the filter does not list any actions, there is nothing for

an intent to match, so all intents with action(s) fail

Android Development
Javier Poncela

IoBM – February 2013 30

Intents – Android Actions

Android Development
Javier Poncela

IoBM – February 2013 31

Implicit Intents – Resolution Process

 Category matching
• Every category in the Intent object must match a y g y j

category in the filter (superset)
• Unlike with actions, an <intent-filter> with no categories

will match only an Intent with no categories (it is not will match only an Intent with no categories (it is not
treated as a wildcard).

Android Development
Javier Poncela

IoBM – February 2013 32

Intents – Android Categories

Android Development
Javier Poncela

IoBM – February 2013 33

Will Some App Receive the Intent?

 Call queryIntentActivities() to get a list of
activities capable of handling the Intent

PackageManager packageManager = getPackageManager();
List<ResolveInfo> activities =

packageManager.queryIntentActivities(intent, 0);
boolean isIntentSafe = activities.size() > 0;

Android Development
Javier Poncela

IoBM – February 2013 34

Resolving Intent Colision

 What happens if another activity (in either the same
or a separate application) has the same filter name?

 Then the Android OS
ll d l lwill display a selection

dialog

 So, we don’t have to
worry, the user willy,
choose its preference

Android Development
Javier Poncela

IoBM – February 2013 35

Returning Results from an Intent

 startActivity() invokes another activity but does
not return a result to the current activity

 Use startActivityForResult() when we want a
l b kresult back

startActivityForResult(new Intent(ACTION_XXXX),
request_Code);_

 The returned result must be handled

Android Development
Javier Poncela

IoBM – February 2013 36

Passing Data via Intents

 ‘Bundling’ the data

 ‘Unbundle’ the data

Android Development
Javier Poncela

IoBM – February 2013 37

Specificy How to Handle an Intent

 Intent calls may carry flags to modify default OS
handling of the Intent

 Some examples
• FLAG_ACTIVITY_NO_HISTORY

o Don’t put this Activity in the History stack
• FLAG DEBUG LOG RESOLUTION• FLAG_DEBUG_LOG_RESOLUTION

o Causes extra logging information to be printed when this
Intent is processed

 How?

Intent newInt= new Intent(Intent.ACTION_SEND);
newInt.setFlags(Intent.FLAG_ACTIVITY_NO_HISTORY);

Android Development
Javier Poncela

IoBM – February 2013 38

Let’s Try… Project Intents

 Import project

b Web Browser
• User selection dialog

 Make Calls
• Phone number preset
• Change ACTION_DIAL for

ACTION_CALL

 Show Map (Do not Press!!)
• API for maps not installed

 Launch My Browser
• No intent-filter matches

Android Development
Javier Poncela

IoBM – February 2013 39

Notifications

Displaying Notifications

 Toast: Short persistence notification on screen

Toast.
makeText(this, “Notification text”,

T t LENGTH SHORT)Toast.LENGTH_SHORT)
.show();

 Notifications: display a persistent message at the top
of the deviceof the device

Android Development
Javier Poncela

IoBM – February 2013 41

Let’s Try… Project Notifications

 Import Project

 Press button

 Press notification icon
and drag down

 Have a look at the code

 Use a toast

Android Development
Javier Poncela

IoBM – February 2013 42

Let’s Try… Project Notifications

 There are now two activities in the manifest

 PendingIntent
• An Intent that it is not yet launched, but it is prepared

to be launched in the future

Intent i = new Intent(this, NotificationView class);Intent i new Intent(this, NotificationView.class);
i.putExtra(“notificationID”, notificationID);
PendingIntent pendingIntent =

PendingIntent.getActivity(this, 0, i, 0);
// getActivity (context, request code, intent, flags)

Android Development
Javier Poncela

IoBM – February 2013 43

Let’s Try… Project Notifications

 Obtain an instance of the NotificationManager class

 Set the details of the notification

Android Development
Javier Poncela

IoBM – February 2013 44

Let’s Try… Project Notifications

 Display the notification when the button is clicked

 When the user clicks on the notification, the
NotificationView activity is launched, and the
notification cancelednotification canceled

Android Development
Javier Poncela

IoBM – February 2013 45

Android Development
Session 3

Javier PoncelaJavier Poncela

Contents

1. User Interface

2 L2. Layouts

3. Menus

4. Dialogs

Android Development
Javier Poncela

IoBM – February 2013 2

User Interface

Views

 Views: Base class for all visual interface elements
• Common operationsp

o Set properties
o Set focus

Attach Listeners
View
Go Attach Listeners

o Set visibility
Group

 View Groups:
View
Group

 View Groups:
Extensions of
View class that
can contain
multiple child
ViewsViews
• Layouts are

View Groups

Android Development
Javier Poncela

IoBM – February 2013 4

Views

Android Development
Javier Poncela

IoBM – February 2013 5

Views

 Views are usually defined in XML

 … and then, they are Inflated in the code
• Component is looked for in the predefined elements
• Properties are read
• Component is created

Android Development
Javier Poncela

IoBM – February 2013 6

Views – Widget Toolbox

 Many predefined widgets
• Buttons
• Text field
• Editable text field
• Check box
• Radio buttons
• Toggle Button• Toggle Button
• DatePicker
• TimePicker
• Spinner
• AutoComplete

ll• Gallery
• MapView
• WebView

Android Development
Javier Poncela

IoBM – February 2013

WebView
• …

7

Let’s Try… Project BasicViews1

 Import project

 Look at res/layout/main.xml

 Look at code .java

• See response to events

• See response to save button• See response to save button
clicks
o xml: android:onClick
o java: btnSaved_clicked

Android Development
Javier Poncela

IoBM – February 2013 8

Let’s Try… Project BasicViews3

 AutoCompleteTextView
• shows a list of

completion suggestions
automatically while the
user is typinguser is typing

 Method setThreshold

Android Development
Javier Poncela

IoBM – February 2013 9

Let’s Try… Project BasicViews4

 Time and date selection
• TimePicker
• DatePicker

 Have a look at
• xml file

j di l t• java dialog management

 ImprovementImprovement
• Create two additional

buttons for calling
o Btn1: TimePicker Dialog
o Btn2: DatePicker Dialog

Android Development
Javier Poncela

IoBM – February 2013 10

Let’s Try… Project BasicViews5

 ListView: Displays a list of
items in a vertically scrolling
list

h k b h h d ff Check behaviour with different
Choice modes (lines 23-25)

 Items are obtained from
resource in strings.xmlg
getResources

 Press ‘s’ in the emulator
setTextFilterEnabled

Android Development
Javier Poncela

IoBM – February 2013 11

Let’s Try… Project BasicViews6

 SpinnerView: Displays one
item at a time from a list and
enables users to choose
among them

Android Development
Javier Poncela

IoBM – February 2013 12

Layouts

Layouts

 Visual structure for a user interface
• Declare UI elements in XML
• Instantiate layout elements at runtime (not recommended)

Linear Layout Relative Layout Grid/Table LayoutLinear Layout Relative Layout Grid/Table Layout

Android Development
Javier Poncela

IoBM – February 2013 14

Linear Layout

 Elements shown in sequence ‘horizontal’ or ‘vertical’
• Android takes care of the arrangementg

/* linear.xml */
<?xml version=“1.0” encoding=“utf-8”?>
<LinearLayout android:orientation=“horizontal”

android:layout_width=“fill_parent”
android:layout_height=“fill_parent”
android:layout_weight=“1”>
<TextView android:text=“red” />
<TextView android:text=“green” />

/</LinearLayout>
<LinearLayout android:orientation=“vertical”

android:layout_width=“fill_parent”
d id l t h i ht “fill t”android:layout_height=“fill_parent”

android:layout_weight=“1”>
<TextView android:text=“row one” />

</LinearLayout>

Android Development
Javier Poncela

IoBM – February 2013 15

</LinearLayout>

Relative Layout

 Elements placed in relation to the position of others

Android Development
Javier Poncela

IoBM – February 2013 16

Table Layout

 Groups views into rows and columns

Android Development
Javier Poncela

IoBM – February 2013 17

Layouts can be nested…

Android Development
Javier Poncela

IoBM – February 2013 18

Layouts can be nested…

<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center_horizontal"
android:background="@color/color_1">

<Button android:text="These"<Button android:text These
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>

<Button android:text="Buttons"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>

<Button android:text="Are"
android:layout_width="wrap_content"
android:layout height="wrap content"/>android:layout_height wrap_content />

<Button android:text="Centered"
android:layout_width="wrap_content"

Android Development
Javier Poncela

IoBM – February 2013 19

android:layout_height="wrap_content"/>
</LinearLayout>

Measurement Units

 dp — Density-independent pixel. 160dp is equivalent to one inch
of physical screen size. This is the recommended unit of
measurement when specifying the dimension of views in your measurement when specifying the dimension of views in your
layout. You can specify either “dp” or “dip” when referring to a
density-independent pixel.

 sp — Scale-independent pixel. This is similar to dp and is
recommended for specifying font sizes.

 i i i d fi d b / 2 f i h b d h pt — Point. A point is defined to be 1/72 of an inch, based on the
physical screen size.

 px — Pixel Corresponds to actual pixels on the screen Using this  px Pixel. Corresponds to actual pixels on the screen. Using this
unit is not recommended, as your UI may not render correctly on
devices with different screen sizes.

HVGA-L：480x320
HVGA-P：320x480

QVGA-L：320x240
QVGA-P：240x320

WVGA-L：800x480

Android Development
Javier Poncela

IoBM – February 2013 20

HVGA P：320x480 QVGA P：240x320

Common Attributes

 Size
• android:layout_height, android:layout_width

o match_parent/ fill_parent : fill the parent space (minus padding)
o wrap_content: use natural size (plus padding)
o An explicit size with a number and a dimension

• android:layout_weight
o A number that gives proportional sizes

 Alignment
• android:layout_gravity

o How the View is aligned within containing View.
• android:gravity

o How the text or components inside the View are aligned.
• Possible values

o top, bottom, left, right, center_vertical, center_horizontal, center
(i.e., center both ways), fill_vertical, fill_horizontal, fill (i.e., fill

Android Development
Javier Poncela

IoBM – February 2013

both directions)

21

Common Attributes

 Margins (blank space outside)
• android:layout_marginBottom,

 Padding (blank space inside)
• android:paddingBottom,

android:layout_marginTop,
android:layout_marginLeft,
android:layout_marginRight

android:paddingTop,
android:paddingLeft,
android:paddingRight

o Units: dp, sp, … o Units: dp, sp, …

Android Development
Javier Poncela

IoBM – February 2013 22

Creating the User Interface Programmatically

 So far, all the UIs have been created using XML
 But UIs can also be created in code

Android Development
Javier Poncela

IoBM – February 2013 23

Let’s Try… Project UICode

 See main.xml

 See .java code
• Layout is not inflated

• Each element is added
in the codein the code

Android Development
Javier Poncela

IoBM – February 2013 24

Menus

Menus

 Options – Primary menu shown when user presses the
MENU button of the device
• Displayed at the bottom of screen
• May include icons and text

If th th 6 it M it i di l d • If there are more than 6 items, a More item is displayed
that opens an Expanded menu

Android Development
Javier Poncela

IoBM – February 2013 26

Menus

 Context – View-specific menu to be shown when user
touches and holds the view
• Floating menu that appears when the user performs a

long-click on an element
• Similar to “right click” menu• Similar to right-click menu

Android Development
Javier Poncela

IoBM – February 2013 27

Menus

 Submenu or Popup – A menu activated when user
touches a visible menu item
• Good to provide options for a second part of a

command/menu item
• Can't be nested: a submenu item can not expand another • Can t be nested: a submenu item can not expand another

submenu

Android Development
Javier Poncela

IoBM – February 2013 28

Defining Options Menus

 Override method onCreateOptionsMenu()
• Triggered the first time an Activity’s menu is displayedgg y p y

menu.add (groupId, itemId, order, text)

public boolean onCreateOptionsMenu(Menu menu) {
MenuItem mnu1 = menu add(0 0 0 "Item 1”);MenuItem mnu1 = menu.add(0, 0, 0, Item 1);

{
mnu1.setAlphabeticShortcut('a');
mnu1 setIcon(R drawable ic launcher);mnu1.setIcon(R.drawable.ic_launcher);

}
MenuItem mnu2 = menu.add(0, 1, 1, "Item 2”);
return super.onCreateOptionsMenu(menu);p p ();

}

Android Development
Javier Poncela

IoBM – February 2013 29

Menu Items

 Shortcut keys

 Checkboxes and radio buttons

Android Development
Javier Poncela

IoBM – February 2013 30

Menu Items

 Icons

 Intents
• An Intent assigned to a Menu Item is triggered when the

clicking of a Menu Item isn’t handled by Activity’s clicking of a Menu Item isn t handled by Activity s
onOptionsItemSelected handler

menuItem.setIntent(new Intent(this, MyOtherActivity.class));

Android Development
Javier Poncela

IoBM – February 2013 31

Updating Menus Dynamically

 Imagine we want to display different menu items in
different situations
• onCreate… is only called the first time

 Method onPrepareOptionsMenu() is called
immediately before the Menu is displayed

@Override
public boolean onPrepareOptionsMenu(Menu menu) {
super.onPrepareOptionsMenu(menu);
MenuItem menuItem = menu.findItem(MENU_ITEM);

[... modify menu items ...]y

return true;
}

Android Development
Javier Poncela

IoBM – February 2013 32

}

Handling Menu Selections

 Method onOptionsItemSelected() is called when a
menu item is selected
• Response to menu selection

// Return false if you item is not handled// Return false if you item is not handled
public boolean onOptionsItemSelected(MenuItem item) {

switch(item.getItemId()) {
case 0:

[... Perform action ...]
return true;

case 1:
[... Perform action ...]
return true;

default: return false;
}

}

Android Development
Javier Poncela

IoBM – February 2013 33

Context Menus

 Define menu
public void onCreateContextMenu(ContextMenu menu, View v, public void onCreateContextMenu(ContextMenu menu, View v,

ContextMenuInfo menuInfo){
super.onCreateContextMenu(menu, v, menuInfo);
menu.setHeaderTitle("Context Menu");
MenuItem mnu1 = menu.add(0, 0, 0, "Item 1”);

mnu1.setAlphabeticShortcut('a');
mnu1.setIcon(R.drawable.ic_launcher);

 Handle menu selections

MenuItem mnu2 = menu.add(0, 1, 1, "Item 2”);
}

Handle menu selections
public boolean onContextItemSelected(MenuItem item) {

switch(item.getItemId()) {
case 0:

[... Perform action ...]
return true;

Android Development
Javier Poncela

IoBM – February 2013 34

...

Let’s Try… Project Menus

 Import project

 See how

• Context Menu is created

• Item selection is handled

 First menu items has a
key shortcut (‘a’)

 Radiobuttons belong to a
separate Group: Group 1
• Menu groups may be• Menu groups may be

enabled/disabled:
setGroupEnabled()

Android Development
Javier Poncela

IoBM – February 2013 35

Submenus

 Selecting a submenu presents a single floating
window that displays all of its Menu Items
• Android does not support nested submenus

SubMenu sub = menu.addSubMenu(0, 0, Menu.NONE, "Submenu");
sub.setHeaderIcon(R.drawable.icon);
sub.setIcon(R.drawable.icon);
MenuItem submenuItem = sub.add(0, 0, Menu.NONE, "Submenu Item");

Android Development
Javier Poncela

IoBM – February 2013 36

Defining Menus in XML

 Menus can be defined using XML syntax
• res/menu folder
• Inflate menu resource using MenuInflater in appropriate

onCreate…Menu() methods
public boolean onCreateOptionsMenu(Menu menu){

MenuInflater inflater = getMenuInflater();
inflater.inflate(R.menu.my_menu, menu);
return true;

• Handling item selection in appropriate

return true;
}

on…ItemsSelected() methods

Android Development
Javier Poncela

IoBM – February 2013 37

Menu defined in XML

<menu
xmlns:android="http://schemas.android.com/apk/res/android"
android:name="Context Menu">
<item
android:id="@+id/item01"
android:icon="@drawable/menu_item"
android:title="Item 1">

</item>/
<item
android:id="@+id/item02"
android:checkable="true"
android:title="Item 2">

</item>
<item

android:id="@+id/item04"
android:title="Submenu">
<menu>
<item
android:id="@+id/item05"
android:title="Submenu Item">

</item>
</menu>

</item>
</menu>

Android Development
Javier Poncela

IoBM – February 2013 38

Dialogs

Dialogs

 Dialogs are floating
activities

 General-purpose dialogs
• AlertDialog

• Based on Dialog class
g

• ProgressDialog
• Toasts

Android Development
Javier Poncela

IoBM – February 2013 40

Dialogs

 Dialogs are modal
 Block all user input and must be dismissed before the p

user can continue.

 Dialogs share a common structure
• Optional title region: Introduces

content
• Content area: text, UI elements,

text fields, checkboxes, etc...text fields, checkboxes, etc...
• Action Buttons: Typically

OK/Cancel, indicating the
preferred optionpreferred option.

Android Development
Javier Poncela

IoBM – February 2013 41

Creating Custom Dialogs

 Create and show… using a reference to a class
• Dialog view is defined as a layoutg y
• Straightforward way but…
• … Dialog is created every time as a new instance

Dialog d = new Dialog(MyActivity.this);
// Set the title// Set the title
d.setTitle("Dialog Title");
// Inflate the layout
d setContentView(R layout dialog view);d.setContentView(R.layout.dialog_view);
d.show();

Android Development
Javier Poncela

IoBM – February 2013 42

Creating Custom Dialogs

 To avoid repeated creation and destruction
• Use showDialog(int)g()
• It will call

o onCreateDialog(int)
P Di l (i t)o onPrepareDialog(int)

• Instance is created once, can be modified whenever is to
be shown

• … same a Menus

 Managing and Displaying … As menus

Android Development
Javier Poncela

IoBM – February 2013 43

Creating Custom Dialogs – onCreateDialog()

 Same method is called for creation of any dialog
• Switch is used to identify dialogy g

o Example: Show time
static final private int TIME_DIALOG = 1;
...
showDialog(TIME_DIALOG);
...
@Override
public Dialog onCreateDialog(int id) {
switch(id) {

case (TIME_DIALOG) :
AlertDialog.Builder timeDialog = new AlertDialog.Builder(this);
timeDialog.setTitle("The Current Time Is...");
return timeDialog.create();

}
return null;

Android Development
Javier Poncela

IoBM – February 2013 44

}

Creating Custom Dialogs – onPrepareDialog()

 Modify the dialog just before showing it
o Example: Show time

@Override
public void onPrepareDialog(int id, Dialog dialog) {
switch(id) {

case (TIME_DIALOG) :
SimpleDateFormat sdf = new SimpleDateFormat("HH:mm:ss");
Date currentTime = new Date(java.lang.System.currentTimeMillis());
String dateString = sdf.format(currentTime);
AlertDialog timeDialog = (AlertDialog)dialog;g g g g
timeDialog.setMessage(dateString);
break;

}}
}

}

Android Development
Javier Poncela

IoBM – February 2013 45

AlertDialog

 Allows to
• Present a message to the user offering them one to g g

three options in the form of buttons (OK/Yes/No/Cancel)
• List options in the form of checkboxes or radio buttons
• P o ide a te t ent bo fo se inp t• Provide a text entry box for user input.

Android Development
Javier Poncela

IoBM – February 2013 46

Let’s Try… Project Dialog

 Import project

 See code
• See case 0 in onCreateDialog

o Commented code is equivalent
to running code

o See how function calls may bey
linked on an object

• See how dialog buttons are
createdcreated

• See how clicks are handled
o Multioptions
o Buttons

• Dialog icon + heading

Android Development
Javier Poncela

IoBM – February 2013 47

ProgressDialog

 Show the progress of some activity
• Example: Status of a download, load a webpage, p , p g ,

request information from a server

Start dialog

Sleep for a whileSleep for a while

Close dialog

Android Development
Javier Poncela

IoBM – February 2013 48

Let’s Try… Project Dialog

 Import project

 See code
• Method onClick2

• Use class ProgressDialog and
show

Android Development
Javier Poncela

IoBM – February 2013 49

ProgressDialog …. Detailed Progress

 It is possible to display progress status in the dialog

 Update when required

progressDialog.setProgress(0);

progressDialog.incrementProgressBy((int)(100/15));

 Note that Dialog is created as before

Android Development
Javier Poncela

IoBM – February 2013

Let’s Try… Project Dialog

 Import project

 See code

• See case 1 in onCreateDialog
o Dialog is based now on class

ProgressDialogProgressDialog

• See how progress is updated

Android Development
Javier Poncela

IoBM – February 2013 51

Context

 We have avoided the issue of Context

 A context object provides a reference to some
element (A), so that new actions/elements can be

d f ()executed in reference to it (A)
• An activity is the reference of a displayed dialog

 When in doubt, use getBaseContext() to get the
context reference

Android Development
Javier Poncela

IoBM – February 2013 52

Android Development
Session 4

Javier PoncelaJavier Poncela

Contents

1. Services

2 A T k2. AsyncTasks

3. Broadcast Receivers

Android Development
Javier Poncela

IoBM – February 2013 2

Working in the Background

 Some tasks are better performed in the background,
in parallel with other tasks

 Android provides several mechanisms
• Services
• Background threads
• AsyncTasks• AsyncTasks
• Alarms

Android Development
Javier Poncela

IoBM – February 2013 3

Services

Services

 A service is an application in Android that runs in the
background without needing to interact with the user
• Respond to events even when application is not active
• Executed in the main thread of the application

 Services have a higher priority than inactive Activities,
so they’re less likely to be killed by the system
• If killed it will be restarted automatically when resources

are available

E l f  Examples of use
• Update data from/to a server
• Receive long responsesReceive long responses
• Long calculations
• Music players

Android Development
Javier Poncela

IoBM – February 2013

• …
5

Running a Service

 Started
• When it is started by calling startService()
• Usually, a started service performs a single operation and

does not return a result to the caller
• When the ope ation is done the se ice sho ld stop itself • When the operation is done, the service should stop itself

or the caller should do it
• Do not return a result

 Bound
• When it is started by calling bindService()
• Offers a client-server interface that allows components to

interact with the service, get requests, deliver results
• Runs as long as one application component is bound to itRuns as long as one application component is bound to it
• Multiple components can bind to the service at once.

Service is destroyed when all of them unbind

Android Development
Javier Poncela

IoBM – February 2013

 Services may run using both mechanisms
6

Creating Services

 Extend class Service

D fi th d

public class MyService extends Service {

@Override
 Define methods

• onCreate
o When first created

@O e de
public void onCreate() {

...
}

o When first created

• onStartCommand
(St t d)

@Override
public IBinder onBind(Intent intent) {

...(Started)
o When start request

return null;
}

@O id• onBind (Bound)
o When bind request

@Override
public int onStartCommand(Intent intent,

int flags, int startId) {
...
return Service.START_STICKY;

}
}

Android Development
Javier Poncela

IoBM – February 2013 7

Restarting Services

 Restarting behaviour, when service is terminated by
OS, is controlled by onStartCommand() returned value
• START_STICKY: Standard behavior, onStartCommand

will be called any time your Service restarts after being
terminated by the OSterminated by the OS.
o OS does not redeliver last intent
o For example, services explicitly started and stopped

• START_NOT_STICKY: Used for Services that are started
to process specific actions or commands. Following
termination by the OS, it will restart only if there are y , y
pending start calls.
o For example, services that handle specific requests

• START REDELIVER INTENT: Combination of previous • START_REDELIVER_INTENT: Combination of previous
two modes
o Recreate service with last intent

Android Development
Javier Poncela

IoBM – February 2013

o Used to ensure that requested commands are completed

8

Manifest

 Include a <service> item within the application node

<?xml version="1 0" encoding="utf-8"?><?xml version= 1.0 encoding= utf 8 ?>
<manifest

xmlns:android=http://schemas.android.com/apk/res/android
package=“iobm.examples.services“>
<application android:icon="@drawable/icon“

android:label="@string/app_name">
<activity android:name=".HelloAndroid“

android:label="@string/app name">android:label @string/app_name >
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>
</activity>

<service android:name=" MyService" /><service android:name .MyService />

</application>
</manifest>

Android Development
Javier Poncela

IoBM – February 2013 9

Services – Starting, Stopping, Passing Data

 Prepare Intent (including data to pass)
Intent myIntent = new Intent(MyService ORDER PIZZA);

 Start the Service

Intent myIntent new Intent(MyService.ORDER_PIZZA);
myIntent.putExtra("TOPPING", "Margherita");

 Start the Service

MyService service= startService(myIntent);

 Stop the Service
• From caller
stopService(new Intent(this, service.getClassName());
stopService(new Intent(this, MyService);

• From self
stopSelf(startId);

Android Development
Javier Poncela

IoBM – February 2013 10

Let´s Try… Project Services

 Import project

 See Manifest file
• Buttons are linked to functions
• Service registration

 Uncomment sections /* Start
Service */
• ServicesActivity java ServicesActivity.java

o Function startService
• MyService.java

o Function onStartCommand

Android Development
Javier Poncela

IoBM – February 2013 11

Let´s Try… Project Services

 See code ‘ServicesActivity’
• Call to Service
• Passing data (urls)

 See code ‘MyService’
• Retrieving data (urls)
• Result on screen• Result on screen

 My click ‘Back’ and service isMy click Back and service is
still running
• Toasts appear on screen

Android Development
Javier Poncela

IoBM – February 2013 12

Binding Services

 Service must implement onBind()

private final IBinder binder = new MyBinder();

@Override
public IBinder onBind(Intent intent) {public IBinder onBind(Intent intent) {
return binder;

}

public class MyBinder extends Binder {
MyService getService() {

return MyService.this;
}

R t f t l Bi d (t d d l)

}
}

 Return a reference to class Binder (or extended class)

Android Development
Javier Poncela

IoBM – February 2013 13

Binding Services

 Activity must be connected to the Service
• ServiceConnection

// Reference to the service
private MyService serviceBinder;

// Handles the connection between the service and activity
private ServiceConnection mConnection = new ServiceConnection() {
public void onServiceConnected(ComponentName className, IBinderpublic void onServiceConnected(ComponentName className, IBinder

service) {
// Called when the connection is made.
serviceBinder = ((MyService.MyBinder)service).getService();

}

public void onServiceDisconnected(ComponentName className) {
// Received when the service unexpectedly disconnects.// Received when the service unexpectedly disconnects.
serviceBinder = null;

}
};

Android Development
Javier Poncela

IoBM – February 2013 14

Binding Services

 Bind the Service

Intent bindIntent = new Intent(MyActivity.this, MyService.class);
bindService(bindIntent, mConnection, Context.BIND_AUTO_CREATE);

 Once the Service has been bound, all its public
methods and properties are available through the
serviceBinder object obtained from the
onServiceConnected handler.onServiceConnected handler.

Android Development
Javier Poncela

IoBM – February 2013 15

Bound Services – Lifecycle

Android Development
Javier Poncela

IoBM – February 2013 16

Let´s Try… Project Services

 Import project

 Uncomment sections /* Bind
Service */
• Re-comment section /* Start

Service */
• ServicesActivity java ServicesActivity.java

o Function startService
• MyService.java

o Function onStartCommand

Android Development
Javier Poncela

IoBM – February 2013 17

Let´s Try… Project Services

 See code ‘ServicesActivity’
• Call to Service
• ServiceConnection functions

 See code ‘MyService’
• Retrieving data (urls)
• Result on screen• Result on screen

 Click ‘Back’ and service is stillClick Back and service is still
running
• Toasts appear on screen

Android Development
Javier Poncela

IoBM – February 2013 18

AsyncTasks

Asynchronous Tasks

 To ensure that your applications remain responsive,
it’s good practice to move all slow, time-consuming
operations off the main application thread and onto a
child thread

 Alternatives
• Use your own Threads Handlers and synchronization Use your own Threads, Handlers and synchronization

with GUI
• AsyncTask: provides all above

Android Development
Javier Poncela

IoBM – February 2013 20

Using AsyncTask

 Create a new class extending AsyncTask
AsyncTask<[Input Parameter Type...],

 T k b d Will b d

AsyncTask<[Input Parameter Type...],
[Progress Report Type...],
[Result Type]>

• doInBackground: Task to be done. Will be executed on
the background thread
o Use publishProgress method to post progress updates to

[Input Parameter Type...]

p g p p g p
the UI

o Return the final result for onPostExecute

• onProgressUpdate: Post interim updates to the UI
o Can safely modify UI elements [Progress Report Type...]

• onPostExecute: When doInBackground has completed,
the return value is passed in
o Update the UI once the asynchronous task has completed

[Result Type]

Android Development
Javier Poncela

IoBM – February 2013

o Update the UI once the asynchronous task has completed

21

Running an AsyncTask

 When execute is called, Android does the following:
1. runs onPreExecute in the main (UI) thread()
2. runs doInBackground in a background thread
3. runs onPostExecute in the main (UI) thread

public void onButtonClick(View view) {
new BackgroundTask().execute(editText.getText().toString());

}

class BackgroundTask extends AsyncTask<String, Void, String> {
protected String doInBackground(String... inputs) {

String reply = // do some background stuff...g p y g
return reply; // this gets sent to onPostExecute

}

t t d id P tE t (St i lt) {protected void onPostExecute(String result) {
tv = (TextView)findViewById(R.id.display_view);
tv.setText(result);

}

Android Development
Javier Poncela

IoBM – February 2013 22

}

Let´s Try… Project Services

 Import project

 See code ‘MyService’
• Class DoBackgroundTask

o Internal methods
• How progress is reported
• How progress is visualized• How progress is visualized
• How finalization is indicated

Android Development
Javier Poncela

IoBM – February 2013 23

Broadcast Receivers

Broadcast Receivers

 Android allows broadcasting events
• Battery low, networks available, new data received, y , , ,

incoming phone call, received text message, …

d h d Broadcast receivers are components that respond to
such events
• Background processesBackground processes

 Events are broadcast as Intents: Broadcast Intentse ts a e b oadcast as te ts oadcast te ts

 Broadcast Receivers must be registered (Manifest) g ()
indicating (<intent-filter>) which Intents it will
listen for

Android Development
Javier Poncela

IoBM – February 2013 25

Broadcast Receivers

 Creating a broadcast receiver
• Executed when a broadcast Intent matches the Intent Filter
• Applications don’t have to be running. They will be started

automatically
public class MyBroadcastReceiver extends BroadcastReceiver {
@Override
public void onReceive(Context context, Intent intent) {

//TODO: React to the Intent received

 Register a broadcast receiver (Manifest)

//TODO: React to the Intent received.
}

}

 Register a broadcast receiver (Manifest)
• Includes action (event) listening for
<receiver android:name=".LifeformDetectedBroadcastReceiver"><receiver android:name .LifeformDetectedBroadcastReceiver >
<intent-filter>

<action android:name="com.paad.action.NEW_LIFEFORM"/>
</intent-filter>
/ i

Android Development
Javier Poncela

IoBM – February 2013 26

</receiver>

Broadcast Intents

 Construct the Intent and broadcast it
(sendBroadcast)
• Set the action, data and category

Intent intent = new Intent("com.paad.action.NEW LIFEFORM");Intent intent new Intent(com.paad.action.NEW_LIFEFORM);
intent.putExtra("lifeformName", lifeformType);
intent.putExtra("longitude", currentLongitude);
intent.putExtra("latitude", currentLatitude);

isendBroadcast(intent);

Android Development
Javier Poncela

IoBM – February 2013 27

Native Android Broadcast Actions

 Android broadcasts Intents for many system Services
http://developer.android.com/reference/android/content/Intent.html

Action Description
ACTION_BOOT_COMPLETED Sent when the platform completes booting

ACTION TIME TICK Sent every minute to indicate that time is tickingACTION_TIME_TICK Sent every minute to indicate that time is ticking

ACTION_TIME_CHANGED Sent when the user changes the time

ACTION_TIMEZONE_CHANGED Sent when the user changes the time zone

ACTION_PACKAGE_ADDED Sent when a package is added to the platform

ACTION_PACKAGE_REMOVED Sent when a package is removed from the
platformplatform

ACTION_BATTERY_CHANGED Sent when the battery charge level or charging
state changes

ACTION_CAMERA_BUTTON Fired when the camera button is clicked

ACTION_MEDIA_EJECT If the user chooses to eject the external storage
media, this event is fired first

ACTION_NEW_OUTGOING_CALL Broadcast when a new outgoing call is about to

Android Development
Javier Poncela

IoBM – February 2013 28

be placed. Intercept outgoing calls.

Ordered and Sticky Broadcast Intents

 Ordered broadcasts
• Using sendBroadcast, the Intent will be received by all g , y

registered Broadcast Receivers
o Cannot control the order and cannot propagate results

• When order in which the Broadcast Receivers receive the • When order in which the Broadcast Receivers receive the
Intent is important, use sendOrderedBroadcast
o sendOrderedBroadcast(intent, null);
o Intent will be delivered to all registered Receivers in order of

priority.

 Sticky broadcasts
• Remain in the system until explicitly removed
• New broadcast receivers registrations will receive the event

o sendStickyBroadcast(intent);
removeStickyBroadcast(intent);

Android Development
Javier Poncela

IoBM – February 2013

o removeStickyBroadcast(intent);

29

Handling Ordered Broadcasts

 Passing results

public void onReceive(Context context, Intent intent) {
...
tmp = getResultData() != null ? getResultData() : "";
setResultData(tmp + ":Receiver 1:");setResultData(tmp + :Receiver 1:);

}

 Aborting propagation

public void onReceive(Context context, Intent intent) {
...
if (condition && isOrderedBroadcast()) {

abortBroadcast();abortBroadcast();
}
...

}

Android Development
Javier Poncela

IoBM – February 2013 30

Handling Sticky Broadcast

 isInitialStickyBroadcast returns true if the
receiver is currently processing the held (cached)
broadcast event

public void onReceive(Context context, Intent intent) {
if (intent.getAction().equals(Intent.ACTION_BATTERY_CHANGED)) {

String age = "Reading taken recently";
if (isInitialStickyBroadcast()) {if (isInitialStickyBroadcast()) {

age = "Reading may be stale”;
}
state.setText("Current Battery Level" + String.valueOf(

intent.getIntExtra(BatteryManager.EXTRA_LEVEL, -1))
+ "\n" + age);

}

Android Development
Javier Poncela

IoBM – February 2013 31

Registering Broadcast Receivers

 Static registration
• In Manifest
• Register at boot time or when package is added

 Dynamic registration
• At runtime

registerReceiver unregisterReceivero registerReceiver, unregisterReceiver
o IntentFilter

public void onCreate(BundlesavedInstanceState) {
...
registerReceiver(newReceiver1(),

new IntentFilter(“MyPackage CustomBroadIntent”));new IntentFilter(MyPackage.CustomBroadIntent));
...
unregisterReceiver(newReceiver1());

}

Android Development
Javier Poncela

IoBM – February 2013 32

Some More Comments on Event Handling

 onReceive() should be short-lived (< 10s)
• Application must remain responsivepp p
• If event handling take a long time, consider starting a

Service, rather than performing complete operation in
onReceive()onReceive()

 BroadcastReceivers can’t start asynchronous
operationsoperations
• e.g., showing a dialog, binding to a Service, starting an

Activity via startActivityForResult
• May happen receiver is no longer in memory when

response is received

 Debugging tip: Log BroadcastReceivers that match an
Intent

Intent setFlag(FLAG DEBUG LOG RESOLUTION)

Android Development
Javier Poncela

IoBM – February 2013

Intent.setFlag(FLAG_DEBUG_LOG_RESOLUTION)

33

Saving Resources with Broadcast Receivers

 Register the receiver when the activity is visible and
unregister when not

Android Development
Javier Poncela

IoBM – February 2013 34

Let´s Try… Project Services

 Import project

 Uncomment sections
/* Broadcast Receiver */
• Re-comment sections /* Start

Service */ and /* Bind Service
*//

• ServicesActivity.java
o Function startService

 See Manifest
• Service registration• Service registration

Android Development
Javier Poncela

IoBM – February 2013 35

Let´s Try… Project Services

 See code ‘ServicesActivity’
• Call to Service
• IntentService is a service that

creates a worker thread
• B oadcastRecei e• BroadcastReceiver

o onReceive
• onResume

o Registers the receiver
• onPause

 See code ‘MyIntentService’
• onHandleIntent
• Log start and end of download

o See log output
• setAction sendBroadcast

Android Development
Javier Poncela

IoBM – February 2013

• setAction, sendBroadcast

36

Activity Lifecycle

 onCreate() onCreate()

 onStart()

 onResume()

 onPause()

 onStop()

 onDestroy() onDestroy()

 onRestart()

Android Development
Javier Poncela

IoBM – February 2013 37

Services Revisited – IntentService

 Handles asynchronous requests on demand on a single
background thread
• It isn't affected by most user interface lifecycle events

 Limitations
• Can't interact directly with your user interface

o To update UI, send results to Activity via Broadcast Receiver
• Work requests run sequentiallyWork requests run sequentially
• An operation can't be interrupted

 Provides default implementation ofp
• onBind(): returns null
• onStartCommand(): sends intent to work queue

 Requires to implement
• Constructor
• onHandleIntent(): It is run automatically on a thread

Android Development
Javier Poncela

IoBM – February 2013

• onHandleIntent(): It is run automatically on a thread

38

IntentService

 Create service
public class RSSPullService extends IntentService {

protected void onHandleIntent(Intent workIntent) {protected void onHandleIntent(Intent workIntent) {
String dataString = workIntent.getDataString();
// Do work here, based on the contents of dataString
...

}
}

 Call service
mServiceIntent = new Intent(getActivity(), RSSPullService.class);
mServiceIntent.setData(Uri.parse(dataUrl));

 Receive result/update

getActivity().startService(mServiceIntent);

Intent localIntent =
new Intent(Constants.BROADCAST_ACTION)

.putExtra(Constants.EXTENDED_DATA_STATUS, status);
LocalBroadcastManager getInstance(this) sendBroadcast(localIntent);

Android Development
Javier Poncela

IoBM – February 2013 39

LocalBroadcastManager.getInstance(this).sendBroadcast(localIntent);

Android Development
Session 5

Javier PoncelaJavier Poncela

Contents

1. User Preferences

2 Fil S2. File Storage

3. Databases

Android Development
Javier Poncela

IoBM – February 2013 2

User Preferences

User Preferences

 Android provides the Shared Preferences mechanism
to help save simple application data
• Application settings: color, font size, URL, contact

person, user name, password (hidden), …

 Saving to a file may be cumbersome… or to a
database… use the in-built preferences mechanismp
• Save pairs of key-value

 Android provides a system of permissions to access
the stored preferences

P i t• Private
• World Readable
• World Writable

Limited data types
String, boolean, float,

int, and long

Android Development
Javier Poncela

IoBM – February 2013

World Writable

4

int, and long

Working with SharedPreferences

 Follow these steps
• Get a handle to the SharedPreference object (file ‘name’)j ()

prefsPrivate =
getSharedPreferences(String name, int accessMode)

• Get the editor

prefsPrivateEditor = prefsPrivate edit()

• Store values

prefsPrivateEditor prefsPrivate.edit()

prefsPrivateEditor.putString(

• Commit changes

prefsPrivateEditor.putString(
SharedPrefTestInput.KEY_PRIVATE,
inputPrivate.getText.toString());

• Commit changes

prefsPrivateEditor.commit();

Android Development
Javier Poncela

IoBM – February 2013 5

Let’s Try… Project SharedPreferences

 Import the project

 4 permission modes
• 3 basic + 1 combined (R/W)

 See code SharedPrefTestInput
C• onCreate

o Strings for preferences
o Variables
o Preference setting process

S d Sh dP fT tO t t See code SharedPrefTestOutput
• How to retrieve stored

preferences

Android Development
Javier Poncela

IoBM – February 2013

preferences

6

Retrieving Shared Preferences

 From the same application
• All preferences are accessible, independent of itsp , p

permission

F th li ti From other application
• Access depends on permission

o Private: Noo Private: No
o World_Readable: Only reading
o World_Writable: Only writing

 How to retrieve a preference
• ‘default’: returned if preference not found/accessibledefault : returned if preference not found/accessible

getString(String key, String default)

Android Development
Javier Poncela

IoBM – February 2013 7

Where Are Preferences Stored?

 Preferences are stored as XML files in the
/data/data/PACKAGE_NAME/ shared_prefs path
• Every application or package has its own user ID
• Linux like access permissions

 Tricky part: The path is built from the Context. So, to
get files from another application you have to know g pp y
and use that application’s Context

createPackageContext(“package.example.prefs",
Context MODE WORLD WRITEABLE);

Android Development
Javier Poncela

IoBM – February 2013 8

Context.MODE_WORLD_WRITEABLE);

Let’s Try… Project GetSharedPreferences

 Import the project

 See code
SharedPrefTestOtherOutput
• onStart

o Gets context
o Retrieves preferenceso Retrieves preferences

• Compare output with previous
example

Android Development
Javier Poncela

IoBM – February 2013 9

File Storage

Using Files

 DISCLAIMER: File Storage is very much Java-based

 Creating files
• File will be stored at

“data/data/[PACKAGE_NAME]/files/file.name”

fos = openFileOutput("filename.txt", Context.MODE_PRIVATE);

 Reading files

fos.write(createInput.getText().toString().getBytes());

 Reading files

fis = this.openFileInput("filename.txt");
b t [] d b t [fi il bl ()]byte[] reader = new byte[fis.available()];
while (fis.read(reader) != -1) {}
this.readOutput.setText(new String(reader));

Android Development
Javier Poncela

IoBM – February 2013 11

Accessing Resource Files

 Files as raw (static) resources (res/raw)
• For example, configuration file at compile timep , g p
Resources resources = this.getResources();
InputStream is = null;
is = resources openRawResource(R raw people);is = resources.openRawResource(R.raw.people);
byte[] reader = new byte[is.available()];
while (is.read(reader) != -1) {}
this readO tp t setTe t(ne String(reader))

 XML file resources (res/xml)

this.readOutput.setText(new String(reader));

XmlPullParser parser =
this.getResources().getXml(R.xml.people);
StringBuffer sb = new StringBuffer();g g ()
try {
while (parser.next() != XmlPullParser.END_DOCUMENT) {

...

Android Development
Javier Poncela

IoBM – February 2013 12

External Storage

 SD card
• Standard java.io.File and related objects can be used to j j

create, read and remove files on the /sdcard path

File sdCard = Environment.getExternalStorageDirectory();
File directory = new File (sdCard.getAbsolutePath() + “/MyFiles”);
File file = new File(directory, “textfile.txt”);
FileInputStream fIn = new FileInputStream(file);

• Manifest

InputStreamReader isr = new InputStreamReader(fIn);

• Manifest
<uses-permission

android:name=”android.permission.WRITE_EXTERNAL_STORAGE”>
/ i i</uses-permission>

Android Development
Javier Poncela

IoBM – February 2013 13

Let’s Try… Project FileStorage

 Import the project

 Several activities to demonstrate
filesystem access
• Begin with first activity
• Go up to the last one

 XML file read XML file read
<people>
<person firstname="John" lastname="Ford" />
<person firstname="Alfred" lastname="Hitchcock" />
<person firstname="Stanley" lastname="Kubrick" />
<person firstname="Wes" lastname="Anderson" />
</people>

Android Development
Javier Poncela

IoBM – February 2013 14

Eclipse File Explorer

 Show file system in device
 Transfer files to/from device/

Android Development
Javier Poncela

IoBM – February 2013 15

Databases

Databases

 For saving relational data, a database is much more
efficient
• For example, contact information

 Android uses the SQLite database system

Th d t b t d f li ti i l  The database created for an application is only
accessible to itself
• Other applications will not be able to access itOther applications will not be able to access it

 The SQLite database created programmatically is Q p g y
stored in the /data/data/<package_name>/databases
folder

Android Development
Javier Poncela

IoBM – February 2013 17

Creating the DBAdapter Helper Class

 Encapsulate the complexities of accessing the data
• Makes access transparent id name emailp

to the calling code
• If the database changes,

no need to update code

_id name email
15 Ritoo rkhan@edu.pk
27 Umair uahmed@edu.pkno need to update code

 Steps

12 Kumar kumar@edu.pk

Steps
• Define constants for each field of the database
• Create class DatabaseHelper extending

SQLiteOpenHelper
o Override onCreate and onUpdate

• Define toDefine to
o Open, close, insert contact, delete contact, get contact, get

all contacts, update contact

Android Development
Javier Poncela

IoBM – February 2013 18

Using the Database

db.open();

// I t// Insert
id = db.insertContact(“Aamir Ahmed”, “ahmed@edu.pk”);

// i// Retrieve
Cursor c = db.getContact(2);
if (c.moveToFirst())
DisplayContact(c);

// Update
db.updateContact(1, “Aamir Ahmed”, “ahmed@edu.pk”);

// Delete
db.deleteContact(1)

db.close();

Android Development
Javier Poncela

IoBM – February 2013 19

Let’s Try… Project Databases

 Import the project

 Run it once

 See code Databases
• onCreate

o Some blocks are commented
o Uncomment and set parameters

at will
o Run again

S d Ad t See code Adapter
• Includes the DatabaseHelper
• Includes functions to query and modify the database

Android Development
Javier Poncela

IoBM – February 2013

Includes functions to query and modify the database

20

Android Development
Session 6

Javier PoncelaJavier Poncela

Contents

1. Location Based Services

2 M2. Maps

3. Overlays

Android Development
Javier Poncela

IoBM – February 2013 2

Mobility, Location, Mapping

 Mobile applications can benefit from being location-
aware, e.g.,
• Routes from current to desired location
• Searching for stores near a current location

Di l i i f b • Displaying info on nearby resources

 Android allows applications to determine & manipulate  Android allows applications to determine & manipulate
location
• Define map-based Activities using Google Maps
• Use Overlays you can annotate maps and handle user

input to contextualize map display
• Use Location Based Services (LBS) to• Use Location-Based Services (LBS) to

o Pinpoint geographic locations
o Convert between coordinates and real-world addresses

Android Development
Javier Poncela

IoBM – February 2013 3

Location Representation

 A location represents a position on Earth
 A Location instance consists of:

• Latitude, longitude, a UTC timestamp
• Optionally, altitude, speed, and bearing

Android Development
Javier Poncela

IoBM – February 2013 4

Location Based Services
(LBS)()

Using Location Based Services

 LBS is an umbrella term used to describe the different
technologies used to find a device’s current location

 The two main LBS elements are
• Location Manager: Provides hooks to LBS services
• Location Providers: Location-finding technology

 Using the Location Manager it is possible to
• Obtain current locationObtain current location
• Track movement
• Set proximity alerts for detecting movement into and

out of a specified area
• Find available Location Providers

Android Development
Javier Poncela

IoBM – February 2013 6

Location Providers

 Multitude of location sources
• GPS

o Most accurate: 1-5 meters
o Only works outdoors

Quickly consumes battery powero Quickly consumes battery power
• Cell-ID

o Determine user location according to connected cell phone
tower

o Very low accuracy due to large coverage area of cell tower
o Requires no extra battery powero Requires no extra battery power

• WiFi
o Determine user location according to recorded location of

WiFi APsWiFi APs
o Only available if Google has recorded WiFi location
o Accuracy: ~60 m

Android Development
Javier Poncela

IoBM – February 2013 7

Selecting a Location Provider

 Find available providers

List<String> providers locationManager getProviders(true);

- LocationManager.GPS_PROVIDER, LocationManager.NETWORK_PROVIDER

List<String> providers = locationManager.getProviders(true);

 Find providers using criteria
String bestProvider;

Criteria criteria = new Criteria();
criteria.setAccuracy(Criteria.ACCURACY_COARSE);
criteria.setPowerRequirement(Criteria.POWER_LOW);
criteria.setAltitudeRequired(false);
criteria.setBearingRequired(false);
criteria.setSpeedRequired(false);
criteria setCostAllowed(true);criteria.setCostAllowed(true);

bestProvider = locationManager.getBestProvider(criteria, true);
List<String> matchingProviders =

Android Development
Javier Poncela

IoBM – February 2013 8

locationManager.getProviders(criteria, true);

Finding the Location

 Access the Location Manager and get and instance of
the Service

String serviceString = Context.LOCATION_SERVICE;
LocationManager locationManager;
locationManager = (LocationManager)getSystemService(serviceString);

 Set appropriate permissions in the Manifest file

locationManager = (LocationManager)getSystemService(serviceString);

<uses-permission android:name=
“android.permission.ACCESS_FINE_LOCATION"/> /* GPS */

<uses-permission android:name=

 Get last location fix

p
"android.permission.ACCESS_COARSE_LOCATION"/> /* Network */

 Get last location fix

String provider = LocationManager.GPS_PROVIDER;
Location location = locationManager getLastKnownLocation(provider);

Android Development
Javier Poncela

IoBM – February 2013 9

Location location locationManager.getLastKnownLocation(provider);

Emulating the Location

 Location-based services are dependent on device
hardware to find the current location

 When developing and testing it is possible to emulate
the location information

h l l d Open the Emulator Control window

Android Development
Javier Poncela

IoBM – February 2013 10

Emulating the Location

 Manual introduction
• Decimal or sexagesimal

 Lists of points
• GPX (GPS eXchange format)• GPX (GPS eXchange format)
• KML (Keyhole Markup

Language)

Description Latitude
Degrees

Longitude
degrees

Latitude
decimal

Longitude
decimal

Karachi, Pakistan 24º53’38”N 67º1’42”E 24,894 67,028
Mount Everest, Nepal 27°59’ N 86°56’ E 27,983 86,933
Ayer’s Rock, Australia 25°23’ S 131°05’ E -25,383 131,083
G ld G t B id C lif i 37°49’ N 122°29’ W 37 816 122 483

Android Development
Javier Poncela

IoBM – February 2013 11

Golden Gate Bridge, California 37°49’ N 122°29’ W 37,816 -122,483

GPX example

Individual points
+

Tracks

Android Development
Javier Poncela

IoBM – February 2013 12

KHL example

Android Development
Javier Poncela

IoBM – February 2013 13

Create new Android Virtual Device (AVD)

 Displaying maps in Android
requires virtual devices with
Google APIs enabled

 Steps to create a new AVD
I E li Wi d AVD • In Eclipse: Window -> AVD
Manager

• Click New
• Give a name
• Select Target: Google APIs
• Set SD card size
• Skin: WVGA800
• Hardware: If additional• Hardware: If additional

hardware must be emulated
• Click Create AVD

Android Development
Javier Poncela

IoBM – February 2013 14

Let’s Try… Project WhereAmI

 Import project

 Set location using Manual
coordinates
• GPS icon activates• GPS icon activates

 Run project

 See Manifest
• <uses permission> clause• <uses-permission> clause

 See code LBSActivity
• onCreate

o Use of Location Manager
Obtain last known location

Android Development
Javier Poncela

IoBM – February 2013

o Obtain last known location

15

Tracking Movement

 Use a LocationListener to get updates whenever
location changes, via requestLocationUpdates method
• As battery might be a concern, operation can be

optimized by specifying the minimum time and the
minimum distance between location change updatesminimum distance between location change updates

int t = 5000; // milliseconds
int distance = 5; // meters

LocationListener myLocationListener = new LocationListener() {
public void onLocationChanged(Location location) { ... }
public void onProviderDisabled(String provider){ ... }public void onProviderDisabled(String provider){ ... }
public void onProviderEnabled(String provider){ ... }
public void onStatusChanged(String provider, int status,

Bundle extras){ ... } /* HW status changed */
};

locationManager.requestLocationUpdates(provider, t, distance,
myLocationListener);

Android Development
Javier Poncela

IoBM – February 2013 16

myLocationListener);

Let’s Try… Project WhereAmI

 Import project

 Set location using Manual
coordinates
• Run project• Run project
• Update location

 See code LBSActivity
• onCreate

o Selection of Location
Provider based on criteria

o Obtain last known location
o Listener registration

• LocationListener
Implementation

Android Development
Javier Poncela

IoBM – February 2013

o Implementation

17

Geocoding

 Geocoding lets you translate between street addresses
and longitude/latitude map coordinates
• Forward: Finds the latitude and longitude of an address
• Reverse: Finds the street address for a given latitude and

longitudelongitude
 Comments

• Geocoding lookups are done on the server, requires Geocoding lookups are done on the server, requires
Internet permission
<uses-permission android:name="android.permission.INTERNET"/>

• Geocoder lookups are performed synchronously so they • Geocoder lookups are performed synchronously, so they
will block the calling thread

• Geocoding functions return a list of Address objects
• Localize your results

Geocoder geocoder = new Geocoder(getApplicationContext(),
L l tD f lt())

Android Development
Javier Poncela

IoBM – February 2013 18

Locale.getDefault());

Reverse Geocoding

 Returns street addresses for physical locations,
specified by latitude/longitude pairs
• Accuray will, of course, depend on the quality of

database data

location = locationManager.getLastKnownLocation
(LocationManager.GPS_PROVIDER);

double latitude = location.getLatitude();
double longitude = location.getLongitude();

List<Address> addresses = null;List<Address> addresses = null;

Geocoder gc = new Geocoder(this, Locale.getDefault());
try {
addresses = gc.getFromLocation(latitude, longitude, 10);

}
catch (IOException e) {}

Android Development
Javier Poncela

IoBM – February 2013 19

Forward Geocoding

 Determines map coordinates for a given location
• Valid location

o Regular street addresses, postcodes, train stations,
landmarks, named buildings, hospitals, …

List<Address> result = geocoder.getFromLocationNameg g
(aStreetAddress, maxResults);

Geocoder fwdGeocoder = new Geocoder(this, Locale.US);Geocoder fwdGeocoder new Geocoder(this, Locale.US);
String streetAddress = "160 Riverside Drive, New York, New York";

List<Address> locations = null;

try {
locations = fwdGeocoder.getFromLocationName(streetAddress, 10);

}}
catch (IOException e) {}

Android Development
Javier Poncela

IoBM – February 2013 20

Let’s Try… Project WhereAmI

 Import project

 Set location using Manual
coordinates
• Lat: 24 894 Long: 67 028• Lat: 24,894, Long: 67,028
• Run project

 See Manifest
• <uses-permission> clause

 See code LBSActivity
• updateWithNewLocation• updateWithNewLocation

o Geocoding
o Response handling

Android Development
Javier Poncela

IoBM – February 2013 21

Maps

Map-based Activities

 A map-based activity will, at least, use the following
elements
• MapActivity: The base class you extend to create a new

Activity.
• MapView: The Map View control Only can be used • MapView: The Map View control. Only can be used

within a MapActivity
o Present geographical data
o Interact with the map
o Modes: Street, satellite, traffic
o Annotation using Overlayso Annotation using Overlays

 Using maps requires
• Virtual Device with Google Maps enabled
• A Google Maps API Key
• Additional permissions

Android Development
Javier Poncela

IoBM – February 2013 23

Obtaining Google Maps API Key

 Without an API key the Map View will not download the
tiles used to display the mapp y p
• Need a Gmail account

 Use the SDK Debug certificate
• For development

Emulator or local connected o Emulator or local connected
device

• Key valid for all projects
h / llin same machine/installation

(apply only once)
• Default debug keystoreDefault debug keystore

o debug.keystore

o Windows -> Preference
-> Android -> Build

Android Development
Javier Poncela

IoBM – February 2013

-> Android -> Build

24

Obtaining Google Maps API Key

 Steps
• Instructions

https://developers.google.com/maps/documentation/android/v1/mapkey

• Get the MD5 certificate of your signing certificate
> "c:\Program Files\Java\jre6\bin\keytool exe" -list -alias> c:\Program Files\Java\jre6\bin\keytool.exe -list -alias
androiddebugkey -keystore
\users\<username>\.android\debug.keystore -storepass <password> -
keypass <password>

>> Certificate fingerprint (MD5):
94:1E:43:49:87:73:BB:E6:A6:88:D7:20:F1:8E:B5:98

• Get the keyy
https://developers.google.com/maps/documentation/android/v1/maps-
api-signup

o Accept termso Accept terms
o Introduce MD5  0pg7mjTX7wgDpmV-iG8aaq2_paA3an0DYp2VYLg

• Insert the key in the layout file

Android Development
Javier Poncela

IoBM – February 2013 25

Using Maps

 Layout with MapView

<com.google.android.maps.MapView
android:id="@+id/myMapView"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:enabled="true"
android:clickable="true"
android:apiKey="myMapKey"

/>

 Changes in Manifest
• Add the library in the application nodeAdd the library in the application node

<uses-library android:name="com.google.android.maps"/>

Android Development
Javier Poncela

IoBM – February 2013 26

Using MapViews

 Default: Street map
• Other views are possiblep

mapView.setSatellite(true);
mapView.setStreetView(true);

Vi tT ffi (t)

 Display zoom controls

mapView.setTraffic(true);

mapView.setBuiltInZoomControls(true);

Android Development
Javier Poncela

IoBM – February 2013 27

Map Controller

 Use Map Controller to pan, move and zoom a MapView
MapController mapController = myMapView.getController();MapController mapController myMapView.getController();

 Map locations are represented by GeoPoint objectsp p y j
• Latitude and longitude measured in microdegrees
Double lat = 37.422006*1E6;
Double lng = -122.084095*1E6;
GeoPoint point = new GeoPoint(lat.intValue(), lng.intValue());

 Re-center, move and zoom the Map View
mapController.setCenter(point);
mapController.animateTo(point);
mapController.setZoom(1);

Note: Zoom = 1  most distant view; Zoom = 21 nearest view

Android Development
Javier Poncela

IoBM – February 2013 28

Let’s Try… Project WhereAmIMaps

 Import project

 Get Google Maps API key

 Update GPS position beforeUpdate GPS position before
running

S \l t\ i l See res\layout\main.xml
• Insert key
• MapView elementMapView element

 See Manifest
• <uses-library>
• <uses-permission>

Android Development
Javier Poncela

IoBM – February 2013 29

Let’s Try… Project WhereAmIMaps

 See code WhereAmI.java
• Based on MapActivityp y
• onCreate

o MapView controls
& configuration& configuration

• mapController

 Others
• Click on map to get

zoom controls
• Send new coordinates

to move the mapto move the map
o Try small differences

• Change map mode
/

Android Development
Javier Poncela

IoBM – February 2013

myMapView.setSatellite(false/true)

30

Overlays

Overlays

 An overlay is a canvas with a transparent background
that is layered onto a Map View
• Enable to add annotations and click handling to

MapViews
• Can add as many Overlays as wished onto a single map• Can add as many Overlays as wished onto a single map

 How?How?
• Extend class Overlay
• Override draw(…) method

o Draw the shape wanted
• Override onTap(…) method

React to user clickso React to user clicks

Android Development
Javier Poncela

IoBM – February 2013 32

Projections

 The canvas represents the visible display surface
 Projections translate between latitude/longitude j / g

coordinates (stored as GeoPoints) and x/y screen
pixel coordinates (stored as Points)

Point myPoint = new Point();

Projection projection = mapView.getProjection();

// To screen coordinates
projection.toPixels(geoPoint, myPoint);
// To GeoPoint location coordinates
projection.fromPixels(myPoint.x, myPoint.y);p j (y , y y);

Android Development
Javier Poncela

IoBM – February 2013 33

Drawing on the Canvas

 The canvas represents the visible display surface
public void draw(Canvas canvas, MapView mapView, boolean shadow) {public void draw(Canvas canvas, MapView mapView, boolean shadow) {
Point myPoint = new Point();
projection.toPixels(geoPoint, myPoint);

// i// Create and setup your paint brush
Paint paint = new Paint();
paint.setARGB(250, 255, 0, 0);
paint.setAntiAlias(true);paint.setAntiAlias(true);
paint.setFakeBoldText(true);

// Create the circle
i d 5int rad = 5;
RectF oval = new RectF(myPoint.x-rad, myPoint.y-rad,
myPoint.x+rad, myPoint.y+rad);

// Draw on the canvas
canvas.drawOval(oval, paint);
canvas.drawText("Red Circle", myPoint.x+rad, myPoint.y, paint);

}

Android Development
Javier Poncela

IoBM – February 2013 34

}

Handling Tap Events

 Override onTap(…)
• Parameters

o Geopoint
o The MapView

public boolean onTap(GeoPoint point, MapView mapView) {
// Perform hit test to see if this overlay is handling the click
if ([. . . perform hit test . . .]) {

[. . . execute on tap functionality . . .]
return true;

}}

// If not handled return false
return false;

}

Android Development
Javier Poncela

IoBM – February 2013 35

Adding and Removing Overlays

 Each MapView contains a list of Overlays currently
displayed
• Adding and removing items from the list is thread-safe

and synchronized
 To add an Overlay onto a Map View create a new  To add an Overlay onto a Map View, create a new

instance of the Overlay and add it to the list

List<Overlay> overlays = mapView.getOverlays();
MyOverlay myOverlay = new MyOverlay();
overlays.add(myOverlay);

 Call postInvalidate() to redraw the MapView

mapView.postInvalidate();

 Call postInvalidate() to redraw the MapView

Android Development
Javier Poncela

IoBM – February 2013 36

Itemized Overlays

 Convenient shortcut for adding markers to a map,
letting you assign a marker image and associated text
to a particular geographical position
• Handles the drawing, placement, click handling, focus

control and layout of each markercontrol, and layout of each marker

List<Overlay> overlays =
mapView.getOverlays();

MyItemizedOverlay markers;
iMarkers = new MyItemizedOverlay

(r.getDrawable(R.drawable.marker));
overlays.add(markers);

Android Development
Javier Poncela

IoBM – February 2013 37

Let’s Try… Project WhereAmIMaps

 Import project

 See code WhereAmIMaps
• onCreate

o Overlay creation

 See code MyPositionOverlay See code MyPositionOverlay
• draw method
• onTap should check useronTap should check user

clicked on the overlay

Android Development
Javier Poncela

IoBM – February 2013 38

Android Development
Session 7

Javier PoncelaJavier Poncela

Contents

1. Example WindWaves

2 H d O2. Hands On

Android Development
Javier Poncela

IoBM – February 2013 2

WindWaves

WindWaves

 Display buoy information

Android Development
Javier Poncela

IoBM – February 2013 4

Let’s Try… Project WindWaves

 Import project

 Run and test it briefly

Manifest

 Indication of main entry point
 List of all activities in the application
 Permission for Internet access

Android Development
Javier Poncela

IoBM – February 2013 5

Buoy Data Structure

 BuoyData.java
• Stores data of a buoyy
• toString

 BuoyOverlayItem.java
• Stores the points to draw in the map

LocationHelper.java

 Auxiliary functions to
 Create geoPointCreate geoPoint
 Parse geoRssPoint
 Parse coordinates

Android Development
Javier Poncela

IoBM – February 2013 6

styles.xml

 Located in res/values

 It is possible to define styles to draw elements
• Texts, backgrounds, borders, …
• Just reference the style to use in each item

Android Development
Javier Poncela

IoBM – February 2013 7

StartActivity.java

 Entry point

 Layout: startactivity.xml
• ScrollView with a RelativeLayout with 3 items

 Starts a thread to delay entering the next activity
h i i ll i i• When time expires, call startActivity

Android Development
Javier Poncela

IoBM – February 2013 8

MapViewActivity.java

 Main activity (it’s a MapActivity)
• Layout: mapview_activity.xmly p y

 onCreate
• Load marker icon
• Create list of OverlayItems

 onStart
• Get location animate to itGet location, animate to it
• Get bouy data

 Options Menu
• onCreateOptionsMenu

Android Development
Javier Poncela

IoBM – February 2013

• onMenuItemSelected
9

MapViewActivity.java

 getBuoyData
• Show progress dialogp g g
• Create new thread and call class to retrieve data
• Parse the list of received buoys
• Update UI (handler)

 getBuoyOverlayItemsge uoyO e ay e s
• Create list of buoy Overlays

h dl handler
• Update list of buoy Overlays
• Redraw mapRedraw map

 LocationListener

Android Development
Javier Poncela

IoBM – February 2013

• Listen to location updates
10

BuoyItemizedOverlay.java

 To represent overlays on the map

 draw
• Relies on super, as it provides an image for the marker

 onTap
di l i h i f li k d b• Presents dialog with extra info on clicked buoy

• Loads layout buoy_selected.xml
o Styles usedo Styles used

Android Development
Javier Poncela

IoBM – February 2013 11

BuoyDetailActivity.java

 Shows more detail on buoy
• Layout: buoydetail_activity.xmly y y

 Calls activity to display buoy URL

startActivity(new Intent(Intent.ACTION_VIEW,
Uri.parse(BuoyDetailActivity.buoyData.link)));

Android Development
Javier Poncela

IoBM – February 2013 12

NDBCFetcher.java

 Retreives buoy data from server
• Creates queryq y
• Sends request to the server
• Creates reader and parser
• Assigns handler to parser
• Initiates parsing

Android Development
Javier Poncela

IoBM – February 2013 13

NDBCHandler.java

 Parses retrieved information from server

 Main functions
startDocument

• startDocument: start processing
• startElement: creates Buoy entry
• endElement: sets job attributes

startElement

• endElement: sets job attributes
• endDocument: finish processing
• characters: parses tokens

endElement

p
endDocument

Android Development
Javier Poncela

IoBM – February 2013 14

Hands On

List of Items

 Screen 1
• Introduce item + Detail + Name Add

URL
• Button Add  Show list

S 2

Detail

URL



 Screen 2
• Show list of items
• Clicking item  get Details

List Item 1

List Item 2Clicking item  get Details
 Screen 3

• Show details + Button

List Item 2
List Item 3

• Click button  show webpage List Item 4

List Item 5

List Item 6

Android Development
Javier Poncela

IoBM – February 2013 16

Calculator

 Basic implementation
• Some digits

1 2
g

• One simple operation
• One complex operation

1 2

3 4

+

!
 Operands are shown in text

boxes when number is input
 For the complex operation

3 4 !

5 6 =
 For the complex operation

use
• ProgressDialog

Op1
g g

• AsyncTask
• … update progress (sleep

bet een calc lation c cles)

Op2

Result
between calculation cycles)

Android Development
Javier Poncela

IoBM – February 2013 17

Further…

http://developer.android.com/guide/components/index.html

Android Development
Javier Poncela

IoBM – February 2013 18

Further…

Android Development
Javier Poncela

IoBM – February 2013 19

	Android S01
	Android S02
	Android S03
	Android S04
	Android S05
	Android S06
	Android S07

